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Context

Cancer registries collect exhaustively and actively individual
data on new cases

Focus on incidence ⇒ aggregated outcome
Small area data

Measure of relative risk = Standardized Incidence Ratio (SIR)

Ratio of the observed cases in each geographical unit on the
expected cases:

SIRi =
Oi

Ei

where Ei = p̂iNi

What about these p̂i?
1 Global risk in the study region

∀i , p̂i = p̂ =

∑∑
· · ·

∑
O.∑∑

· · ·
∑

N.

2 Adjusted risk on several categorical variable(s)
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Very brief history of mapping

Spot map: cholera and water street pumps (Snow, 1854)

Choropleth map: disease mortality in England and Wales
(Haviland, 1878)

Recent developments enhanced by

Development of Geographical Information Systems (GIS)
Increasing availability of spatially-referenced data
Development of statistical methods

Standard practice was (is?) to map risks per small area BUT
sparse data need more sophisticated statistical analysis techniques
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1. Why mapping small area incidence rates?

Mapping geographical variations in health outcomes

Sources of heterogeneity and spatial patterns
Suggest public health determinants
Etiological clues

Small scale

Less susceptible to ecological bias
Better able to detect highly localised effects
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2. Why smoothing small area incidence rates?

1 Rare events ⇒ imprecision: σ̂SIR ∝ 1
E

SIR very imprecise for rare disease and small population
Precision can vary widely between geographical units

2 SIR in each geographical unit is estimated independently

Ignores possible spatial correlation (see further)
Problem of multiple significance testing

⇒ These problems may be addressed by spatial smoothing of the
crude data
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3. How smoothing small area incidence rates?

Idea is to ”borrow information” for neighbouring geographical
units to produce better estimates of the risk

Different methods

Local smoothing algorithms (spatial moving averages)
Trend surface (kriging, spline)
Random effects models (empirical Bayes, Bayes)
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Autocorrelation: definition

Phenomenon ”is much more alike” between two neighbouring
geographical units than between two random geographical
units

Neighbourhood → sharing a common boundary

Assessment by a statistic like Moran’s I

SIRs are spatially correlated because they reflect (?)
supra-small area level spatially varying risk factors

⇒ Incorporate spatial correlation in the modelling of SIRs
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General spatial model with autocorrelation

Poisson regression for SIRs

Assume Poisson sampling for count (random variable)

Oi ∼ P(Eiθi)

⇒ log [E(Oi |θi)] = log (Ei) + log (θi)

→ Generalised linear model (GLM)
1 log (Ei) is an offset
2 Then log (θi) is something like µ+Ui

Spatial structure on Ui

1 Gaussian Markov Random Field = Intrinsic Conditional
AutoRegressive process

2 Geospline

Bayesian or frequentist inference?
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ICAR and convolution prior

Intrinsic conditional autoregressive process

Ui |U−i ∼ N
(∑

j∈∂ Ui

ni
,
σ2
U

ni

)

ni : number of neighbours around i
Mean: average risk in neighbouring
Variance inversely proportional to number of neighbours

Proxy for unobserved covariates which, if observed, would
display a spatial autocorrelation

What about proxy for unobserved covariates which, if
observed, would not display a spatial autocorrelation?

⇒ Add a second term for ”heterogeneity”: Vi ∼ N
(
0, σ2

V

)
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Aggregated spatial data as continuous

Geographical unit ⇔ coordinates of its centroid

Spatial trend Ui = α · loni + β · lati
Bi-dimensional smoothing is much more powerful (if
necessary)

⇒ Geospline and generalised additive mixed models (GAMM)

Thin plate spline (isotropic)
Tensor product of cubic P-splines

Ui =

m1∑ m2∑
ωjkaj (loni)bk (lati)

Idem in Bayesian inference but on a regular grid with random
walk priors on the ωs
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Autocorrelation: summary

Aggregated spatial data (adjacency matrix)

Bayesian ICAR or convolution prior

”Continuous” spatial data (centroids)

Geospline (Bayesian or frequentist)
Distance model ≈ geostatistics (Bayesian or frequentist)
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General principle

Assume a continuous explanation covariate (even latent)
known by geographical unit, say Townsend
So simple to incorporate covariates in previous GLM, GLMM
or GAMM

log [E(Oi |θi)] =

{
log (Ei) + µ+Ui (previously)
log (Ei) + µ+Ui + β · Townsendi (from now)

More general: structured additive regression model (StAR)

log [E(Oij |θij )] = log (Eij ) + µ+Ui + βX +

K∑
fk (x̃ij )

where
j Stands for combination of the strata of

covariates we are interest in (even if
xij = xi , ∀j )

fk (·) May be multidimensional (or not) smoothing
function
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Modelling a covariate x

1 Main effect

Categorical: dummy-variables and ”fixed” effect∑C−1
βcI (x = c)

Ordinal: recoding with contrast or as discrete with scoring
Discrete: ”fixed” effect βx
Continuous: ”fixed” effect βx or smoothing f (x ) (for example
spline)

2 Interaction with y

”Fixed” effect: β · x · y
Varying coefficient model: x · f (y) or y · f (x )
Multidimensional smoothing: f (x , y) (even if y is geospline)

Strongly depends on how the covariate is and on the aim of
modelling
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Some more issues

Adjusted relative risk (multiplicative assumption)

log (Ei) + µ+Ui +Vi + β · Townsendi
exp (β) is the spatially adjusted relative risk of Townsend
exp (Ui +Vi) is the global adjusted spatial relative risk

Misalignment: different scales for variables

Spatial autocorrelation of O and of Townsend ⇒ spatial
confounding

Introduce or remove bias in estimating β
”Restricted spatial regression”
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Summary

Small area estimation

Less susceptible to ecological bias
Better able to detect highly localised effects
Supra-small area risk factors
Need for spatial smoothing

Freeware: R (mgcv, INLA), WinBUGS, BayesX
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A super-short example

Ear-Nose-Throat cancer in Haut-Rhin

New cases between 01/01/1988 and 31/12/2005

12,580,392 people at risk

Small area: commune of residence

3,304 male and 516 female

A best model includes:

Different age-time smoothing surfaces for male and for female
Geospline

Adjusted relative risk

Minimum Maximum Median

Male 0.002 3.07 1.01
Female 0.005 36.9 6.10
Commune 0.651 1.53 1.02
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A super-short example

A
nn

ée

Age

R
isque ajusté A

nn
ée

Age

R
isque ajusté

Figure: Age-time smoothing surfaces: male (left) and female (right)
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Besag J, York J, Mollié A. Bayesian image restoration, with two
applications in spatial statistics. Annals of the Institute of Statistical
Mathematics 1991:43,1-59.

Clayton D, Kaldor J. Empirical Bayes estimates of age-standardized
relative risks for use in disease mapping. Biometrics 1987:(43),671-81.

Fahrmeir L, Kneib T, Lang S. Penalized structured additive regression for
space-time data : a bayesian perspective. Statistica Sinica
2004:(14),715-45.

Lang S, Brezger A. Bayesian P-splines. Journal of Computational and
Graphical Statistics 2004:(13),183-212.

Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent
Gaussian models by using integrated nested Laplace approximations. J. R.
Statist. Soc. B 2009:(71),319-392.

Wood S. Thin plate regression splines. J. R. Statist. Soc. B
2003:65,95-114.

Wood S. Low-rank scale invariant tensor product smooths for generalized
additive mixed models. Biometrics 2006:62,1025-36.



Introduction Smoothing SIRs Spatial models Poisson ecological regression In conclusion

Thank you for your patient attention

It seems to be a law of science that no discovery or invention is
named after its first discoverer.
Stigler’s Law of Eponymy, Stigler 1980.

⇒ Who was the first to discover Bayes’s Theorem?
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