

# Mouse models of breast and prostate cancer





#### **Daniel METZGER**

metzger@igbmc.fr

### **Department of Functional Genetic and Cancer**







- Cancer: complex diseases.
- → Challenge: improve diagnosis and treatments.

- Cancer: complex diseases.
- → Challenge: improve diagnosis and treatments.

In vitro studies / in vivo studies

Cell lines, Xenografts, PDX, organoids

- Use of certain mouse strains :
- → spontaneous cancer or increased sensitivity to "environmental" exposure (radiation, chemicals, viruses...)

# **Useful for:**

- identification of oncogenes and tumor suppressor genes, mapping of modifier genes...
- assessment of **carcinogenic** or **chemopreventive** effects of compounds.

### Limitations :

- restricted subset of tumor types and grades
- incomplete **penetrance**
- Variable latency

- → Development of new technologies to provide mouse models that :
- accurately reflect the common forms of human cancer
- allow systematic investigation of tumor genetics and gene-environment interactions

**Genetically engineered mouse models** (GEMMs)



## **Hormone-dependent cancers**

#### **Estimated New Cases**

|                             |         |      | Males | Females               |         |      |
|-----------------------------|---------|------|-------|-----------------------|---------|------|
| Prostate                    | 161,360 | 19%  |       | Breast                | 252,710 | 30   |
| Lung & bronchus             | 116,990 | 14%  | 4     | Lung & bronchus       | 105,510 | 129  |
| Colon & rectum              | 71,420  | 9%   |       | Colon & rectum        | 64,010  | 89   |
| Urinary bladder             | 60,490  | 7%   |       | Uterine corpus        | 61,380  | 79   |
| Melanoma of the skin        | 52,170  | 6%   |       | Thyroid               | 42,470  | 59   |
| Kidney & renal pelvis       | 40,610  | 5%   |       | Melanoma of the skin  | 34,940  | 49   |
| Non-Hodgkin lymphoma        | 40,080  | 5%   |       | Non-Hodgkin lymphoma  | 32,160  | 49   |
| Leukemia                    | 36,290  | 4%   |       | Leukemia              | 25,840  | 39   |
| Oral cavity & pharynx       | 35,720  | 4%   |       | Pancreas              | 25,700  | 39   |
| er & intrahepatic bile duct | 29,200  | 3%   |       | Kidney & renal pelvis | 23,380  | 39   |
| All Sites                   | 836,150 | 100% |       | All Sites             | 852,630 | 1009 |

#### **Excludes:**

- basal and squamous cell skin cancers
- in situ carcinoma except urinary bladder.



### Hormone-dependent cancers

#### **Estimated New Cases**



#### **Excludes:**

- basal and squamous cell skin cancers
- in situ carcinoma except urinary bladder.

#### **Estimated Deaths**



→ high socio-economical impact.



### **Breast cancer**



|   | Lung & bronchus                | 71,280  | 25%  |
|---|--------------------------------|---------|------|
|   | Breast                         | 40,610  | 14%  |
| X | Colon & rectum                 | 23,110  | 8%   |
|   | Pancreas                       | 20,790  | 7%   |
|   | Ovary                          | 14,080  | 5%   |
|   | Uterine corpus                 | 10,920  | 4%   |
|   | Leukemia                       | 10,200  | 4%   |
|   | Liver & intrahepatic bile duct | 9,310   | 3%   |
|   | Non-Hodgkin lymphoma           | 8,690   | 3%   |
|   | Brain & other nervous system   | 7,080   | 3%   |
|   | All Sites                      | 282,500 | 100% |
|   |                                |         |      |

Global gene expression analyses have classified **breast cancer** into at least **five biologically distinct intrinsic subtypes**:

- Iuminal A,
- luminal B,
- human epidermal growth factor receptor 2 (HER2)- enriched,
- basal-like
- normal-like.



### **Breast cancer**



|   | Lung & bronchus                | 71,280  | 25%  |
|---|--------------------------------|---------|------|
|   | Breast                         | 40,610  | 14%  |
| X | Colon & rectum                 | 23,110  | 8%   |
|   | Pancreas                       | 20,790  | 7%   |
|   | Ovary                          | 14,080  | 5%   |
|   | Uterine corpus                 | 10,920  | 4%   |
|   | Leukemia                       | 10,200  | 4%   |
|   | Liver & intrahepatic bile duct | 9,310   | 3%   |
|   | Non-Hodgkin lymphoma           | 8,690   | 3%   |
|   | Brain & other nervous system   | 7,080   | 3%   |
|   | All Sites                      | 282,500 | 100% |

Global gene expression analyses have classified **breast cancer** into at least **five biologically distinct intrinsic subtypes**:

- luminal A,
- luminal B,
- human epidermal growth factor receptor 2 (HER2)- enriched,
- basal-like
- normal-like.

**Luminal A and B subtypes** : estrogen receptor  $\alpha$  (**ER** $\alpha$ ) positive

- → ~ 70% of breast cancers
- → Estrogen-dependent growth → Tamoxifen treatment/resistance
- → major clinical interest.



### Hormone-dependent cancers

#### **Estimated deaths**

| Females |                                |         |      |
|---------|--------------------------------|---------|------|
|         | Lung & bronchus                | 72,160  | 26%  |
|         | Breast                         | 40,450  | 14%  |
| X       | Colon & rectum                 | 23,170  | 8%   |
|         | Pancreas                       | 20,330  | 7%   |
|         | Ovary                          | 14,240  | 5%   |
|         | Uterine corpus                 | 10,470  | 4%   |
|         | Leukemia                       | 10,270  | 4%   |
|         | Liver & intrahepatic bile duct | 8,890   | 3%   |
|         | Non-Hodgkin lymphoma           | 8,630   | 3%   |
|         | Brain & other nervous system   | 6,610   | 2%   |
|         | All Sites                      | 281,400 | 100% |

### Genetically modified mouse models (GEMMs) of breast cancer

(overexpression of Myc, ErbB2/Neu, polyoma middle T antigen (PyMT), SV 40 T antigen, wnt-1, TGF-α, c-myc, ras...)

- → mammary carcinomas
  - **ER**( **negative** and hormone independent
- → do not mimic luminal subtypes.



### Hormono-dependent cancers

**Genetically modified mouse models** (GEMMs) (overexpression of Myc, ErbB2/Neu, polyoma middle T antigen (PyMT), SV 40 T antigen, wnt-1, TGF-α, c-myc, ras...)

- → mammary carcinomas
  - **prevalently ERα negative** and hormone independent
- → do not mimic luminal subtypes.

Ras: the most frequently mutated dominant acting oncogene in human cancer

### MMTV-Ki-Ras(G12V) transgenic mice:

- develop mammary adenocarcinoma with a short tumor latency,
- high tumor incidence

#### → Limitations :

- tumor formation in various tissues (e.g. salivary and harderian glands),
- poor **characterization** of mammary carcinomas.

Omer et al., 2000























MG-Ki-Ras(G12V) mice develop mammary tumors that recapitulate then most common human breast cancer subtype: ductal ER-positive invasive adenocarcinoma.





Normal epithelium

Prostatic Intraepithelial Neoplasia (PIN)

Adenocarcinoma

Metastasis





**---** →





**Initiation** 

Latency

**Local progression** 

**Invasion** 





### Prostate cancer development takes decades

Diagnosis: - Serum PSA (prostate specific antigen)

- rectal digital examination
- histological analysis of biopsies

Over diagnosis / over treatment





## **TRAMP** mice

(transgenic adenocarcinoma mouse model)

Transgene: rPB - SV40 T antigen

-426 - +28 bp rat probasin promoter

(Greenberg et al., 1995)

### Use:

- pre-clinical testing of chemoprevention strategies
- Identify pathways involved in prostate cancer initiation and progression

# **TRAMP** mice

(transgenic adenocarcinoma mouse model)

Transgene : rPB - SV40 T antigen

-426 - +28 bp rat probasin promoter

(Greenberg et al., 1995)

### Use:

- pre-clinical testing of chemoprevention strategies
- Identify pathways involved in prostate cancer initiation and progression

#### **Limitations:**

- Prostate tumour formation driven by viral proteins that are not involved in the generation of human prostate cancers
- Develop neuroendocrine carcinoma that rarely occur in human prostate cancer
- Tantigen is expressed in the prostate at the first week(s) of life
- The activity of rPB promoter is regulated by androgens at adulthood
   → effects observed in hormone ablation experiments might result from decreased transgene expression.



#### PTEN (phosphatase and tensin homolog deleted on chromosome 10):

- → Negative regulator of PI3K/AKT pathway
- → frequently deleted in various advanced human cancers
- → PTEN mutations in 10 15 % of prostate tumors and in 60 % of advanced cancers



#### PTEN (phosphatase and tensin homolog deleted on chromosome 10):

- → Negative regulator of PI3K/AKT pathway
- → frequently deleted in various advanced human cancers
- → PTEN mutations in 10 15 % of prostate tumors and in 60 % of advanced cancers

### Consequences of PTEN deficiency in prostate cells?

Mouse model: PB-Cre/PTEN<sup>L2/L2</sup>

→ Prostatic tumors



#### PTEN (phosphatase and tensin homolog deleted on chromosome 10):

- → Negative regulator of PI3K/AKT pathway
- → frequently deleted in various advanced human cancers
- → PTEN mutations in 10 15 % of prostate tumors and in 60 % of advanced cancers

### Consequences of PTEN deficiency in prostate cells?

Mouse model: PB-Cre/PTEN<sup>L2/L2</sup>

#### → Prostatic tumors

A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis

Andrea Alimonti,<sup>1,2</sup> Caterina Nardella,<sup>1,2</sup> Zhenbang Chen,<sup>1,2</sup> John G. Clohessy,<sup>1,2</sup> Arkaitz Carracedo,<sup>1,2</sup> Lloyd C. Trotman,<sup>2</sup> Ke Cheng,<sup>1,2</sup> Shohreh Varmeh,<sup>1,2</sup> Sara C. Kozma,<sup>3</sup> George Thomas,<sup>3</sup> Erika Rosivatz,<sup>4</sup> Rudiger Woscholski,<sup>4</sup> Francesco Cognetti,<sup>5</sup>
Howard I. Scher.<sup>6</sup> and Pier Paolo Pandolfi<sup>1,2</sup>

- No DNA-damage response
- No hyper-proliferation phase
- No replicative stress!



PTEN-loss induced cell senescence (PICS) represents a new type of premature senescence

Relevant model? (gene ablation before puberty!)

# Site-directed cell-specific temporally-controlled targeted somatic mutagenesis in the mouse.

Transgenic expression of the chimeric Cre-ER<sup>T2</sup> recombinase





Metzger et al., PNAS, 1995

# Site-directed cell-specific temporally-controlled targeted somatic mutagenesis in the mouse.

Transgenic expression of the chimeric Cre-ER<sup>T2</sup> recombinase





Metzger et al., PNAS, 1995



# Site-directed cell-specific temporally-controlled targeted somatic mutagenesis in the mouse.



### Generation of PTENpe-/- mice

(in which PTEN is selectively ablated in prostatic epithelial cells at adulthood; Tam-treated PSA-CreER<sup>T2</sup>/PTEN<sup>L2/L2</sup> mice)

PTENpe-/- mice



Normal prostate



**Prostatic Intraepithelial** Neoplasia (PIN)

(2 - 9 months)



micro-invasive cancinoma

(9 - 15 months)



Local invasive Adenocarcinoma

(15 - 20 months)

Mouse model of prostate cancer development



### Characterisation of PTEN<sup>pe-/-</sup> mice



Normal prostate



**Prostatic Intraepithelial** Neoplasia (PIN)

(2 - 9 months)



micro-invasive cancinoma

(9 - 15 months)



Local invasive Adenocarcinoma (15 - 20 months)







#### Characterisation of PTEN<sup>pe-/-</sup> mice





- **pHP1**γ positive prostatic epithelial cells
- Senescence-associated secretory phenotype

(SASP; IL-1 $\alpha$ , IL-1 $\beta$ , M-CSF, TNF $\alpha$ ...)



#### Characterisation of PTENpe-/- mice



PCNA: proliferation marker

γH2AX foci colocalize with PCNA foci.

- γH2AX foci localized at the site of DNA replication
- Nuclear foci of RPA32 (coats stretches of ssDNA during replicative stress)
   ATR (Ataxia telangiectasia and Rad3 related) and 53BP1

PTEN<sup>pe-/-</sup> prostatic epithelial cells → Replication stress, DNA damage response → Senescence



#### Characterisation of PTENpe-/- mice



PCNA: proliferation marker

γH2AX foci colocalize with PCNA foci.

- γH2AX foci localized at the site of DNA replication
- Nuclear foci of RPA32 (coats stretches of ssDNA during replicative stress)
   ATR (Ataxia telangiectasia and Rad3 related) and 53BP1

PTEN<sup>pe-/-</sup> prostatic epithelial cells → Replication stress, DNA damage response → Senescence

PTEN-loss induced cell senescence (PICS): similar to oncogene-induced senescence!

Approaches for cancer prevention and therapy based on PICS induction:

→ high risk [replication stress → accumulation of mutations (e.g. p53)]



### Characterisation of cell populations in senescent PINs of PTEN<sup>pe-/-</sup> mice

→ Single cell sequencing



High-throughput sequencing with Illumina HiSeq



### Characterisation of cell populations in mouse prostate









### Characterisation of cell populations in senescent PINs of PTEN<sup>pe-/-</sup> mice







Characterisation of cell populations in senescent PINs of PTENpe-/- mice





Characterisation of cell populations in senescent PINs of PTEN<sup>pe-/-</sup> mice







Characterisation of cell populations in senescent PINs of PTENpe-/- mice









→ Alterations in the microenvironment during disease progression

### Prostate cancer and vitamin D



### **Epidemiology**

- correlation between prostate cancer severity and
  - low circulating levels of Vitamin D
  - low vitamin D receptor expression

#### **Preclinical**

- anti-proliferative and anti-inflammatory potency in
  - prostatic cancer cell lines
  - mouse model of prostate cancer

### Role of vitamin D in senescent PIN

## 1,25(OH)<sub>2</sub>D<sub>3</sub>



### Role of vitamin D in senescent PIN

## 1,25(OH)<sub>2</sub>D<sub>3</sub>

### Gemini-72, a vitamin D analog



### Role of vitamin D in senescent PIN



### Therapeutic potency of Gemini-72 for prostate cancer



Gemini-72 decreases the severity of pre-cancerous lesions

### Therapeutic potency of Gemini-72 for prostate cancer



Gemini-72 decreases the severity of pre-cancerous lesions, by inducing apoptosis

## Therapeutic potency of Gemini-72 for prostate cancer



Vitamin D analogs represent a promising preventive strategy for prostate cancer

→ Identification of additional potent VitD analogs



- p53 : mutated or deleted in advanced and metastatic prostate cancer (Chen et al., 2005)

### Generation and characterisation of PTEN/p53<sup>pe-/-</sup> mice

- Increased cell plasticity
- Senescence bypass/escape
- Metastatic tumors
- Castration resistant





### Mouse models of cancer

### - Powerful tools

- to investigate tumor progression
- to identify new markers
- to develop new therapeutic strategies

- Complementary to PDX, organoids ...



## **Acknowledgements**



#### **Gilles LAVERNY**

Delphine DUTEIL
Daniela ROVITO
Mohamed ABOUELMAATY
Anna Isabella RERRA
Kamar GHAIBOUR
Regis LUTZING

### IGBMC and ICS common facilitie & platforms



#### Former members

Maxime PARISOTTO
Justine GANTZER
Julie TERZIC
Camille EMPROU
Louisa RAMSPACHER
Elise GRELET
Rana EL BIZRI
Jean-Marc BORNERT

#### **University of Calabria**

Sebastiano ANDO Rocco MALIVINDI Stefania CATALANO Pietro RIZZA Ines BARONE Salvatore PANZA Natacha ROCHEL

University of New Jersey
Hubert MAEHR







L'Alsace

le cancer









