Germline Loss-of-Function Mutations in EPHB4 Cause a Second Form of Capillary Malformation-Arteriovenous Malformation (CM-AVM2) Deregulating RAS-MAPK Signaling.

Fiche publication


Date publication

juillet 2017

Journal

Circulation

Auteurs

Membres identifiés du Cancéropôle Est :
Pr VABRES Pierre


Tous les auteurs :
Amyere M, Revencu N, Helaers R, Pairet E, Baselga E, Cordisco MR, Chung WK, Dubois J, Lacour JP, Martorell L, Mazereeuw-Hautier J, Pyeritz RE, Amor DJ, Bisdorff A, Blei F, Bombei H, Dompmartin A, Brooks DG, Dupont J, González-Enseñat MA, Frieden IJ, Gérard M, Kvarnung M, Hanson-Kahn AK, Hudgins L, Léauté-Labrèze C, McCuaig C, Metry D, Parent P, Paul C, Petit F, Phan A, Quéré I, Salhi A, Turner AM, Vabres P, Vicente A, Wargon O, Watanabe S, Weibel L, Wilson A, Willing M, Mulliken JB, Boon LM, Vikkula M

Résumé

Background -Most AVMs are localized and occur sporadically; however they also can be multifocal in autosomal dominant disorders, such as Hereditary Hemorrhagic Telangiectasia (HHT) and Capillary Malformation-Arteriovenous Malformation (CM-AVM). Previously, we identified RASA1 mutations in 50% of patients with CM-AVM. Herein we studied non-RASA1 patients to further elucidate the pathogenicity of CMs and AVMs. Methods -We conducted a genome-wide linkage study on a CM-AVM family. Whole exome sequencing was also performed on 9 unrelated CM-AVM families. We identified a candidate-gene and screened it in a large series of patients. The influence of several missense variants on protein function was also studied in vitroResults -We found evidence for linkage in two loci. Whole-exome sequencing data unraveled four distinct damaging variants in EPHB4 in five families that co-segregated with CM-AVM. Overall, screening of EPHB4 detected 47 distinct mutations in 54 index patients: 27 lead to a premature stop codon or splice-site alteration, suggesting loss of function. The other 20 are non-synonymous variants that result in amino-acid substitutions. In vitro expression of several mutations confirmed loss of function of EPHB4. The clinical features included multifocal CMs, telangiectasias, and AVMs. Conclusions -We found EPHB4 mutations in patients with multifocal CMs associated with AVMs. The phenotype, CM-AVM2, mimics RASA1-related CM-AVM1 and also HHT. RASA1 encoded p120RASGAP is a direct effector of EPHB4. Our data highlights the pathogenetic importance of this interaction and indicts EPHB4-RAS-ERK signaling pathway as a major cause for arterio-venous malformations.

Mots clés

arteriovenous fistula, arteriovenous malformation, capillary, genetics, linkage, vascular disease, vascular endothelial function, venous

Référence

Circulation. 2017 Jul;: