High pressure sensitization of heat-resistant and pathogenic foodborne spores to nisin.
Fiche publication
Date publication
décembre 2019
Journal
Food microbiology
Auteurs
Membres identifiés du Cancéropôle Est :
Pr PERRIER-CORNET Jean-Marie
Tous les auteurs :
Modugno C, Kmiha S, Simonin H, Aouadhi C, Diosdado Cañizares E, Lang E, André S, Mejri S, Maaroufi A, Perrier-Cornet JM
Lien Pubmed
Résumé
Today, there is no effective non-thermal method to inactivate unwanted bacterial spores in foods. High-Pressure (HP) process has been shown to act synergistically with moderate heating and the bacteriocin nisin to inactivate spores but the mechanisms have not been elucidated. The purpose of the present work was to investigate in depth the synergy of HP and nisin on various foodborne spore species and to bring new elements of understandings. For this purpose, spores of Bacillus pumilus, B. sporothermodurans, B. licheniformis, B. weihenstephanensis, and Clostridium sp. were suspended in MES buffer, in skim milk or in a liquid medium simulating cooked ham brine and treated by HP at 500 MPa for 10 min at 50 °C or 20 °C. Nisin (20 or 50 IU/mL) was added at three different points during treatment: during HP, during and or in the plating medium of enumeration. In the latter two cases, a high synergy was observed with the inhibition of the spores of Bacillus spp. The evaluation of the germinated fraction of Bacillus spp. spores after HP revealed that this synergy was likely due to the action of nisin on HP-sensitized spores, rather than on HP-germinated spores. Thus, the combination of nisin and HP can lead to Bacillus spp. spore inhibition at 20 °C. And Nisin can act on HP-treated spores, even if they are not germinated. This paper provides new information about the inhibition of spores by the combination of HP and nisin. The high synergy observed at low temperature has not been reported yet and could allow food preservation without the use of any thermal process.
Mots clés
Bacillus, Clostridium, Germination, Highly-heat-resistant, Psychrotrophic
Référence
Food Microbiol.. 2019 Dec;84:103244