Temporal and Spatial Uncoupling of DNA Double Strand Break Repair Pathways within Mammalian Heterochromatin.
Fiche publication
Date publication
juillet 2016
Journal
Molecular cell
Auteurs
Membres identifiés du Cancéropôle Est :
Dr REINA-SAN-MARTIN Bernardo, Dr MAGLOTT-ROTH Anne
Tous les auteurs :
Tsouroula K, Furst A, Rogier M, Heyer V, Maglott-Roth A, Ferrand A, Reina-San-Martin B, Soutoglou E
Lien Pubmed
Résumé
Repetitive DNA is packaged into heterochromatin to maintain its integrity. We use CRISPR/Cas9 to induce DSBs in different mammalian heterochromatin structures. We demonstrate that in pericentric heterochromatin, DSBs are positionally stable in G1 and recruit NHEJ factors. In S/G2, DSBs are resected and relocate to the periphery of heterochromatin, where they are retained by RAD51. This is independent of chromatin relaxation but requires end resection and RAD51 exclusion from the core. DSBs that fail to relocate are engaged by NHEJ or SSA proteins. We propose that the spatial disconnection between end resection and RAD51 binding prevents the activation of mutagenic pathways and illegitimate recombination. Interestingly, in centromeric heterochromatin, DSBs recruit both NHEJ and HR proteins throughout the cell cycle. Our results highlight striking differences in the recruitment of DNA repair factors between pericentric and centromeric heterochromatin and suggest a model in which the commitment to specific DNA repair pathways regulates DSB position.
Référence
Mol. Cell. 2016 Jul;63(2):293-305