Interfacial Behavior of Oligo(Ethylene Glycol) Dendrons Spread Alone and in Combination with a Phospholipid as Langmuir Monolayers at the Air/Water Interface.
Fiche publication
Date publication
novembre 2019
Journal
Molecules (Basel, Switzerland)
Auteurs
Membres identifiés du Cancéropôle Est :
Dr GALLANI Jean-Louis, Dr FELDER-FLESCH Delphine
Tous les auteurs :
Shi D, Nguyen DV, Maaloum M, Gallani JL, Felder-Flesch D, Krafft MP
Lien Pubmed
Résumé
Dendrons consisting of two phosphonate functions and three oligo(ethylene glycol) (OEG) chains grafted on a central phenoxyethylcarbamoylphenoxy group were synthesized and investigated as Langmuir monolayers at the surface of water. The OEG chain in the position was grafted with a -Bu end-group, a hydrocarbon chain, or a partially fluorinated chain. These dendrons are models of structurally related OEG dendrons that were found to significantly improve the stability of aqueous dispersions of iron oxide nanoparticles when grafted on their surface. Compression isotherms showed that all OEG dendrons formed liquid-expanded Langmuir monolayers at large molecular areas. Further compression led to a transition ascribed to the solubilization of the OEG chains in the aqueous phase. Brewster angle microscopy (BAM) provided evidence that the dendrons fitted with hydrocarbon chains formed liquid-expanded monolayers throughout compression, whilst those fitted with fluorinated end-groups formed crystalline-like domains, even at large molecular areas. Dimyristoylphosphatidylcholine and dendron molecules were partially miscible in monolayers. The deviations to ideality were larger for the dendrons fitted with a fluorocarbon end-group chain than for those fitted with a hydrocarbon chain. Brewster angle microscopy and atomic force microscopy supported the view that the dendrons were ejected from the phospholipid monolayer during the OEG conformational transition and formed crystalline domains on the surface of the monolayer.
Mots clés
Brewster angle microscopy, atomic force microscopy, fluorocarbon, interfacial film, molecular recognition
Référence
Molecules. 2019 Nov 14;24(22):