Differential responses of neurons, astrocytes, and microglia to G-quadruplex stabilization.

Fiche publication


Date publication

juin 2021

Journal

Aging

Auteurs

Membres identifiés du Cancéropôle Est :
Dr MONCHAUD David


Tous les auteurs :
Tabor N, Ngwa C, Mitteaux J, Meyer MD, Moruno-Manchon JF, Zhu L, Liu F, Monchaud D, McCullough LD, Tsvetkov AS

Résumé

The G-quadruplex (G4-DNA or G4) is a secondary DNA structure formed by DNA sequences containing multiple runs of guanines. While it is now firmly established that stabilized G4s lead to enhanced genomic instability in cancer cells, whether and how G4s contribute to genomic instability in brain cells is still not clear. We previously showed that, in cultured primary neurons, small-molecule G4 stabilizers promote formation of DNA double-strand breaks (DSBs) and downregulate the gene. Here, we determined if G4-dependent downregulation is unique to neurons or if the effects in neurons also occur in astrocytes and microglia. We show that primary neurons, astrocytes and microglia basally exhibit different G4 landscapes. Stabilizing G4-DNA with the G4 ligand pyridostatin (PDS) differentially modifies chromatin structure in these cell types. Intriguingly, PDS promotes DNA DSBs in neurons, astrocytes and microglial cells, but fails to downregulate in astrocytes and microglia, indicating differences in DNA damage and repair pathways between brain cell types. Taken together, our findings suggest that stabilized G4-DNA contribute to genomic instability in the brain and may represent a novel senescence pathway in brain aging.

Mots clés

Brca1, DNA damage, G-quadruplex, genomic instability, neurodegeneration

Référence

Aging (Albany NY). 2021 Jun 17;13: