Core-shell polygalacturonate magnetic iron oxide nanoparticles: Synthesis, characterization, and functionalities.
Fiche publication
Date publication
août 2022
Journal
International journal of biological macromolecules
Auteurs
Membres identifiés du Cancéropôle Est :
Dr PIETREMENT Olivier
Tous les auteurs :
Maryjose N, Custovic I, Chaabane L, Lesniewska E, Piétrement O, Chambin O, Assifaoui A
Lien Pubmed
Résumé
This work aims to synthesize polygalacturonate-based magnetic iron oxide nanoparticles (INP-polyGalA). The synthesis consists of the diffusion of both Fe and Fe at a molar ratio of 1:2 through polyGalA solution followed by the addition of an alkaline solution. To form individual nanoparticle materials, the polyGalA concentration needs to be below its overlapping concentration (C*). The synthesized materials (INP-polyGalA) contain about 45 % of organic compound (polyGalA), and they have an average particle size ranging from 10 to 50 nm as estimated by several techniques (DLS, TEM and AFM) and their surfaces are negatively charged in pH range 2 to 7. The synthesized NPs showed magnetic characteristics, thanks to the formation of magnetite (FeO) as confirmed by X-ray diffractions (XRD). Moreover, AFM combined with Infra-red mapping allowed us to conclude that polyGalA is located in the core of the nanoparticles but also on their surfaces. More specially, both carboxylate (COO) and carboxylic (COOH) groups of polyGalA are observed on the NPs surfaces. The presence of such functional groups allowed the synthesized material to (i) bind through the electrostatic interactions methylene blue (MB) which may have a great potential for r pollution control or (ii) to form hydrogel beads (ionotropic gelation) by using calcium as a crosslinking agent which can be used to encapsulate active molecules and target their release by using an external stimulus (magnetic field).
Mots clés
AFM-IR, Chemical modification, Nanoparticles, Polysaccharides
Référence
Int J Biol Macromol. 2022 08 3;: