Neuraminidase-1: A Sialidase Involved in the Development of Cancers and Metabolic Diseases.

Fiche publication


Date publication

octobre 2022

Journal

Cancers

Auteurs

Membres identifiés du Cancéropôle Est :
Dr BLAISE Sébastien, Dr DUCA Laurent, Pr MORJANI Hamid, Dr BENNASROUNE Aline, Dr BENNASROUNE Amar


Tous les auteurs :
Toussaint K, Appert-Collin A, Morjani H, Albrecht C, Sartelet H, Romier-Crouzet B, Maurice P, Duca L, Blaise S, Bennasroune A

Résumé

Sialidases or neuraminidases (NEU) are glycosidases which cleave terminal sialic acid residues from glycoproteins, glycolipids and oligosaccharides. Four types of mammalian sialidases, which are encoded by different genes, have been described with distinct substrate specificity and subcellular localization: NEU-1, NEU-2, NEU-3 and NEU-4. Among them, NEU-1 regulates many membrane receptors through desialylation which results in either the activation or inhibition of these receptors. At the plasma membrane, NEU-1 also associates with the elastin-binding protein and the carboxypeptidase protective protein/cathepsin A to form the elastin receptor complex. The activation of NEU-1 is required for elastogenesis and signal transduction through this receptor, and this is responsible for the biological effects that are mediated by the elastin-derived peptides (EDP) on obesity, insulin resistance and non-alcoholic fatty liver diseases. Furthermore, NEU-1 expression is upregulated in hepatocellular cancer at the mRNA and protein levels in patients, and this sialidase regulates the hepatocellular cancer cells' proliferation and migration. The implication of NEU-1 in other cancer types has also been shown notably in the development of pancreatic carcinoma and breast cancer. Altogether, these data indicate that NEU-1 plays a key role not only in metabolic disorders, but also in the development of several cancers which make NEU-1 a pharmacological target of high potential in these physiopathological contexts.

Mots clés

Neuraminidase-1, cancer, metabolic disorders, sialidase activity

Référence

Cancers (Basel). 2022 10 5;14(19):