Mosquito vector competence for dengue is modulated by insect-specific viruses.

Fiche publication


Date publication

janvier 2023

Journal

Nature microbiology

Auteurs

Membres identifiés du Cancéropôle Est :
Pr IMLER Jean-Luc


Tous les auteurs :
Olmo RP, Todjro YMH, Aguiar ERGR, de Almeida JPP, Ferreira FV, Armache JN, de Faria IJS, Ferreira AGA, Amadou SCG, Silva ATS, de Souza KPR, Vilela APP, Babarit A, Tan CH, Diallo M, Gaye A, Paupy C, Obame-Nkoghe J, Visser TM, Koenraadt CJM, Wongsokarijo MA, Cruz ALC, Prieto MT, Parra MCP, Nogueira ML, Avelino-Silva V, Mota RN, Borges MAZ, Drumond BP, Kroon EG, Recker M, Sedda L, Marois E, Imler JL, Marques JT

Résumé

Aedes aegypti and A. albopictus mosquitoes are the main vectors for dengue virus (DENV) and other arboviruses, including Zika virus (ZIKV). Understanding the factors that affect transmission of arboviruses from mosquitoes to humans is a priority because it could inform public health and targeted interventions. Reasoning that interactions among viruses in the vector insect might affect transmission, we analysed the viromes of 815 urban Aedes mosquitoes collected from 12 countries worldwide. Two mosquito-specific viruses, Phasi Charoen-like virus (PCLV) and Humaita Tubiacanga virus (HTV), were the most abundant in A. aegypti worldwide. Spatiotemporal analyses of virus circulation in an endemic urban area revealed a 200% increase in chances of having DENV in wild A. aegypti mosquitoes when both HTV and PCLV were present. Using a mouse model in the laboratory, we showed that the presence of HTV and PCLV increased the ability of mosquitoes to transmit DENV and ZIKV to a vertebrate host. By transcriptomic analysis, we found that in DENV-infected mosquitoes, HTV and PCLV block the downregulation of histone H4, which we identify as an important proviral host factor in vivo.

Mots clés

Animals, Humans, Zika Virus, genetics, Insect Viruses, physiology, Dengue Virus, genetics, Zika Virus Infection, Mosquito Vectors, Arboviruses, genetics, RNA Viruses, Aedes, Dengue

Référence

Nat Microbiol. 2023 01;8(1):135-149