Performance of a Region of Interest-based Algorithm in Diagnosing International Society of Urological Pathology Grade Group ≥2 Prostate Cancer on the MRI-FIRST Database-CAD-FIRST Study.

Fiche publication


Date publication

mars 2024

Journal

European urology oncology

Auteurs

Membres identifiés du Cancéropôle Est :
Dr ESCHWEGE Pascal, Pr LANG Hervé, Pr ROY Catherine, Dr TRICARD Thibault


Tous les auteurs :
Couchoux T, Jaouen T, Melodelima-Gonindard C, Baseilhac P, Branchu A, Arfi N, Aziza R, Barry Delongchamps N, Bladou F, Bratan F, Brunelle S, Colin P, Correas JM, Cornud F, Descotes JL, Eschwege P, Fiard G, Guillaume B, Grange R, Grenier N, Lang H, Lefèvre F, Malavaud B, Marcelin C, Moldovan PC, Mottet N, Mozer P, Potiron E, Portalez D, Puech P, Renard-Penna R, Roumiguié M, Roy C, Timsit MO, Tricard T, Villers A, Walz J, Debeer S, Mansuy A, Mège-Lechevallier F, Decaussin-Petrucci M, Badet L, Colombel M, Ruffion A, Crouzet S, Rabilloud M, Souchon R, Rouvière O

Résumé

Prostate multiparametric magnetic resonance imaging (MRI) shows high sensitivity for International Society of Urological Pathology grade group (GG) ≥2 cancers. Many artificial intelligence algorithms have shown promising results in diagnosing clinically significant prostate cancer on MRI. To assess a region-of-interest-based machine-learning algorithm aimed at characterising GG ≥2 prostate cancer on multiparametric MRI.

Mots clés

Artificial intelligence, Magnetic resonance imaging, Prostate biopsy, Prostate cancer, Radiomics

Référence

Eur Urol Oncol. 2024 03 15;: