Disruption of a long distance regulatory region upstream of SOX9 in isolated disorders of sex development.

Fiche publication


Date publication

décembre 2011

Auteurs

Membres identifiés du Cancéropôle Est :
Pr CALLIER Patrick


Tous les auteurs :
Benko S, Gordon CT, Mallet D, Sreenivasan R, Thauvin-Robinet C, Brendehaug A, Thomas S, Bruland O, David M, Nicolino M, Labalme A, Sanlaville D, Callier P, Malan V, Huet F, Molven A, Dijoud F, Munnich A, Faivre L, Amiel J, Harley V, Houge G, Morel Y, Lyonnet S

Résumé

BACKGROUND: The early gonad is bipotential and can differentiate into either a testis or an ovary. In XY embryos, the SRY gene triggers testicular differentiation and subsequent male development via its action on a single gene, SOX9. The supporting cell lineage of the bipotential gonad will differentiate as testicular Sertoli cells if SOX9 is expressed and conversely will differentiate as ovarian granulosa cells when SOX9 expression is switched off. RESULTS: Through copy number variation mapping this study identified duplications upstream of the SOX9 gene in three families with an isolated 46,XX disorder of sex development (DSD) and an overlapping deletion in one family with two probands with an isolated 46,XY DSD. The region of overlap between these genomic alterations, and previously reported deletions and duplications at the SOX9 locus associated with syndromic and isolated cases of 46,XX and 46,XY DSD, reveal a minimal non-coding 78 kb sex determining region located in a gene desert 517-595 kb upstream of the SOX9 promoter. CONCLUSIONS: These data indicate that a non-coding regulatory region critical for gonadal SOX9 expression and subsequent normal sex development is located far upstream of the SOX9 promoter. Its copy number variations are the genetic basis of isolated 46,XX and 46,XY DSDs of variable severity (ranging from mild to complete sex reversal). It is proposed that this region contains a gonad specific SOX9 transcriptional enhancer(s), the gain or loss of which results in genomic imbalance sufficient to activate or inactivate SOX9 gonadal expression in a tissue specific manner, switch sex determination, and result in isolated DSD.

Référence

J Med Genet. 2011 Dec;48(12):825-30