Exome sequencing of cases with neural tube defects identifies candidate genes involved in one-carbon/vitamin B12 metabolisms and Sonic Hedgehog pathway.

Fiche publication


Date publication

mai 2019

Journal

Human genetics

Auteurs

Membres identifiés du Cancéropôle Est :
Pr GUEANT Jean-Louis, Dr OUSSALAH Abderrahim


Tous les auteurs :
Renard E, Chéry C, Oussalah A, Josse T, Perrin P, Tramoy D, Voirin J, Klein O, Leheup B, Feillet F, Guéant-Rodriguez RM, Guéant JL

Résumé

Neural tube defects (NTD) result from complex mechanisms between genes, nutrition and environment. The identification of genetic predictors by genome exome sequencing and their influence on genome methylation need further consideration. Gene variants related to 1-CM metabolism (1-CM) could influence the methylation of genes involved in neural tube embryogenesis through impaired synthesis of S-adenosyl methionine. We performed exome sequencing of 6116 genes referenced in OMIM and NTD risk and genome-wide methylation in 23 NTD cases. We replicated the most significant associations in 81 other cases. The analysis of exome sequencing identified one gene of 1-CM, LRP2, and one gene of Sonic Hedgehog (SHH), GLI3, in the 23 NTD cases. The analysis restricted to genes of 1-CM and neural tube embryogenesis identified five gene predictors of 1-CM (LRP2, rs137983840; MMAA, rs148142853; TCN2, rs35838082; FPGS, rs41306702; BHMT, rs763726268) and two of SHH (GLI3, rs35364414; MKS1, rs151023718). We replicated the association of TCN2, BHMT and GLI3 with NTD risk in the 81 cases. We found a significant hemimethylation of CFAP46 that may influence SHH activation in one case, who carried risk alleles in BHMT, LRP2, MMAA and GLI3. In conclusion, we identified new candidate genes and rare variants that highlight an interacting influence of genes involved in SHH and 1-CM in the puzzle of genetic components of NTD risk.

Référence

Hum. Genet.. 2019 May 28;: