Nile Red-Based GPCR Ligands as Ultrasensitive Probes of the Local Lipid Microenvironment of the Receptor.

Fiche publication


Date publication

mars 2021

Journal

ACS chemical biology

Auteurs

Membres identifiés du Cancéropôle Est :
Dr VILLA Pascal, Dr BONNET Dominique, Dr KLYMCHENKO Andrey


Tous les auteurs :
Hanser F, Marsol C, Valencia C, Villa P, Klymchenko AS, Bonnet D, Karpenko J

Résumé

The local lipid microenvironment of transmembrane receptors is an essential factor in G protein coupled receptor (GPCR) signaling. However, tools are currently missing for studying endogenously expressed GPCRs in primary cells and tissues. Here, we introduce fluorescent environment-sensitive GPCR ligands for probing the microenvironment of the receptor in living cells using fluorescence microscopy under no-wash conditions. We designed and synthesized antagonist ligands of the oxytocin receptor (OTR) by conjugating a high-affinity nonpeptidic OTR ligand PF-3274167 to the environment-sensitive fluorescent dye Nile Red. The length of the polar PEG spacer between the pharmacophore and the fluorophore was adjusted to lower the nonspecific interactions of the probe while preserving a strong fluorogenic response. We demonstrated that the new probes embed into the lipid bilayer in the vicinity of the receptor and convey information about the local polarity and the lipid order via the wavelength-shifting emission of the Nile Red fluorophore.

Référence

ACS Chem Biol. 2021 Mar 18;: