Inhibition of Recruitment and Activation of Neutrophils by Pyridazinone-Scaffold-Based Compounds.
Fiche publication
Date publication
juin 2022
Journal
International journal of molecular sciences
Auteurs
Membres identifiés du Cancéropôle Est :
Pr GANGLOFF Sophie, Pr SAPI Janos, Dr VELARD Frédéric, Dr AUDONNET Sandra , Dr GERARD Stéphane
Tous les auteurs :
Moniot A, Braux J, Siboni R, Guillaume C, Audonnet S, Allart-Simon I, Sapi J, Tirouvanziam R, Gérard S, Gangloff SC, Velard F
Lien Pubmed
Résumé
In inflammatory diseases, polymorphonuclear neutrophils (PMNs) are known to produce elevated levels of pro-inflammatory cytokines and proteases. To limit ensuing exacerbated cell responses and tissue damage, novel therapeutic agents are sought. 4aa and 4ba, two pyridazinone-scaffold-based phosphodiesterase-IV inhibitors are compared in vitro to zardaverine for their ability to: (1) modulate production of pro-inflammatory mediators, reactive oxygen species (ROS), and phagocytosis; (2) modulate degranulation by PMNs after transepithelial lung migration. Compound 4ba and zardaverine were tested in vivo for their ability to limit tissue recruitment of PMNs in a murine air pouch model. In vitro treatment of lipopolysaccharide-stimulated PMNs with compounds 4aa and 4ba inhibited the release of interleukin-8, tumor necrosis factor-α, and matrix metalloproteinase-9. PMNs phagocytic ability, but not ROS production, was reduced following treatment. Using a lung inflammation model, we proved that PMNs transmigration led to reduced expression of the CD16 phagocytic receptor, which was significantly blunted after treatment with compound 4ba or zardaverine. Using the murine air pouch model, LPS-induced PMNs recruitment was significantly decreased upon addition of compound 4ba or zardaverine. Our data suggest that new pyridazinone derivatives have therapeutic potential in inflammatory diseases by limiting tissue recruitment and activation of PMNs.
Mots clés
air pouch model, exocytosis, inflammation, migration, phagocytosis
Référence
Int J Mol Sci. 2022 06 29;23(13):