Targeted Single Particle Tracking with Upconverting Nanoparticles.

Fiche publication


Date publication

février 2024

Journal

ACS applied materials & interfaces

Auteurs

Membres identifiés du Cancéropôle Est :
Pr MELY Yves, Dr PRZYBILLA Frédéric


Tous les auteurs :
Dukhno O, Ghosh S, Greiner V, Bou S, Godet J, Muhr V, Buchner M, Hirsch T, Mély Y, Przybilla F

Résumé

Single particle tracking (SPT) is a powerful technique for real-time microscopic visualization of the movement of individual biomolecules within or on the surface of living cells. However, SPT often suffers from the suboptimal performance of the photon-emitting labels used to tag the biomolecules of interest. For example, fluorescent dyes have poor photostability, while quantum dots suffer from blinking that hampers track acquisition and interpretation. Upconverting nanoparticles (UCNPs) have recently emerged as a promising anti-Stokes luminescent label for SPT. In this work, we demonstrated targeted SPT using UCNPs. For this, we synthesized 30 nm diameter doped UCNPs and coated them with amphiphilic polymers decorated with polyethylene glycol chains to make them water-dispersible and minimize their nonspecific interactions with cells. Coated UCNPs highly homogeneous in brightness (as confirmed by a single particle investigation) were functionalized by immunoglobulin E (IgE) using a biotin-streptavidin strategy. Using these IgE-UCNP SPT labels, we tracked high-affinity IgE receptors (FcεRI) on the membrane of living RBL-2H3 mast cells at 37 °C in the presence and absence of antigen and obtained good agreement with the literature. Moreover, we used the FcεRI-IgE receptor-antibody system to directly compare the performance of UCNP-based SPT labels to organic dyes (AlexaFluor647) and quantum dots (QD655). Due to their photostability as well as their backgroundless and continuous luminescence, SPT trajectories obtained with UCNP labels are no longer limited by the photophysics of the label but only by the dynamics of the system and, in particular, the movement of the label out of the field of view and/or focal plane.

Mots clés

high-affinity IgE receptor, nanoparticles, single particle tracking, single-molecule microscopy, upconversion

Référence

ACS Appl Mater Interfaces. 2024 02 22;: