The control of chromosome segregation during mitosis in epithelial cells by substrate elasticity.

Fiche publication


Date publication

janvier 2012

Auteurs

Membres identifiés du Cancéropôle Est :
Dr FREUND Jean-Noël, Dr VOEGEL Jean-Claude, Pr SCHAAF Pierre, Dr RABINEAU Morgane


Tous les auteurs :
Kocgozlu L, Rabineau M, Koenig G, Haikel Y, Schaaf P, Freund JN, Voegel JC, Lavalle P, Vautier D

Résumé

Materials of defined elasticity, including synthetic material scaffolds and tissue-derived matrices, can regulate biological responses of cells and in particular adhesion, migration, growth and differentiation which are essential parameters for tissue integration. These responses have been extensively investigated in interphase cells, but little is known whether and how material elasticity affects mitotic cells. We used polyelectrolyte multilayer films as model substrates with elastic modulus ranging from Eap = 0 up to Eap = 500 kPa and mitotic PtK2 epithelial cells to address these important questions. Soft substrates (Eap < 50 kPa) led to abnormal morphology in chromosome segregation, materialized by chromatin bridges and chromosome lagging. Frequency of these damages increased with decreasing substrate stiffness and was correlated with a pro-apoptotic phenotype. Mitotic spindle was not observed on soft substrates where formation of chromatin damages is due to low beta1-integrin engagement and decrease of Rac1 activities. This work constitutes the first evidence that soft substrates hinder epithelial cell division. In perspective, our findings emphasize the prime incidence of the material elasticity on the fate of the phenotype, especially of stem cells in the mitotic phase.

Référence

Biomaterials. 2012 Jan;33(3):798-809